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Abstract. The relativistic transformation properties of the heavy quark-antiquark interaction potential
are considered in the framework of the relativistic quark model. A special attention is paid to the long-
range (confining) contribution to the spin-independent part of qq̄ interaction. The retardation effects are
consistently taken into account.

The relativistic properties of the quark-antiquark in-
teraction potential play an important role in analysing dif-
ferent static and dynamical characteristics of heavy me-
sons. The Lorentz-structure of the confining quark-anti-
quark interaction is of particular interest. In the litera-
ture there is no consent on this item. For a long time
the scalar confining kernel has been considered to be the
most appropriate one [1,2]. The main argument in favour
of this choice is based on the nature of the heavy quark
spin-orbit potential. The scalar potential gives a vanishing
long-range magnetic contribution, which is in agreement
with the flux tube picture of quark confinement of [3],
and allows to get the fine structure for heavy quarkonia
in accord with experimental data. However, the calcula-
tions of electroweak decay rates of heavy mesons with a
scalar confining potential alone yield results which are in
worse agreement with data than for a vector potential
[4,5]. The radiative M1-transitions in quarkonia such as
e. g. J/ψ → ηcγ are the most sensitive for the Lorentz-
structure of the confining potential. The relativistic cor-
rections for these decays arising from vector and scalar
potentials have different signs [4,5]. In particular, as it has
been shown in [5], agreement with experiments for these
decays can be achieved only for a mixture of vector and
scalar potentials. In this context, it is worth remarking,
that the recent study of the qq̄ interaction in the Wilson
loop approach [6] indicates that it cannot be considered
as simply a scalar. Moreover, the found structure of spin-
independent relativistic corrections is not compatible with
a scalar potential. A similar conclusion has been obtained
in [7] on the basis of a Foldy-Wouthuysen reduction of
the full Coulomb gauge Hamiltonian of QCD. There, the
Lorentz-structure of confinement has been found to be of
vector nature. The scalar character of spin splittings in
heavy quarkonia in this approach is dynamically generated
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through the interaction with collective gluonic degrees of
freedom. Thus we see that the spin-dependent structure
of (qq̄) interaction is well established now, while the spin-
independent part is still controversial in the literature.

In preceding papers [8,9] we have developed the rela-
tivistic quark model with the (qq̄) potential consisting of
the perturbative one-gluon exchange part and a nonper-
turbative one which is a mixture of the Lorentz scalar and
vector confining potentials:

V (p,q;M) = ūa(p)ūb(−p)

{
4
3
αsDµν(k)γµ

a γ
ν
b (1)

+V V
conf(k)Γ

µ
a Γb;µ + V S

conf(k)

}
ua(q)ub(−q),

where k = p − q, Dµν is the gluon propagator in the
Coulomb gauge and Γµ is the effective vector long-range
vertex, containing both the Dirac and Pauli terms

Γµ = γµ +
iκ

2m
σµνk

ν , (2)

ua,b(p) are the Dirac bispinors. Using the identity

ū(p)Γµu(q) = ū(p)
{
pµ + qµ

2m
+
i(1 + κ)

2m
σµνk

ν

}
u(q)

we can treat the parameter (1+κ) as the nonperturbative
(long-range) chromomagnetic moment of the quark and κ
as its anomalous part (flavour independent).

In the nonrelativistic limit the Fourier transform of (1)
gives the static potential

V0(r) = VCoul(r) + V S
conf(r) + V V

conf(r), (3)

where

VCoul(r) = −4
3
αs

r
.
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In order to reproduce the linear confining potential

Vconf(r) = Ar +B

in this limit one should put

V V
conf(r) = (1 − ε)(Ar +B)

V S
conf(r) = ε(Ar +B), (4)

where ε is the mixing parameter.
Now assuming that both quarks are heavy enough we

evaluate the (v2/c2) relativistic corrections to the static
potential (3), (4). For the one-gluon exchange part the
retardation effect is taken into account by the contribution
of transverse gluon exchange and thus it is sufficient in the
adopted approximation to set k0 = 0. For the confining
part one should utilize a different procedure (see [10–12]).
The Fourier transform of the linear potential Ar in the
momentum space looks like:

A

∫
d3rre−ik·r = −A 8π

|k|4 , k = p − q. (5)

The natural (though not unique) relativistic extension (de-
pendent only on the four-momentum transfer) of expres-
sion (5) is to substitute (−k2) → (k2

0 − k2) and thus

1
|k|4 → 1

(k2
0 − k2)2

. (6)

Now as mentioned above we should choose the procedure
of fixing k0. On the mass shell due to energy conservation
we have k0 = 0. So k0 may be considered as the measure
of deviation either from the mass shell or from the energy
shell. We choose the second possibility and set k0 equal to
εa(p)−εa(q) or to εb(q)−εb(p). Then in the symmetrized
form [10,12] we get

k2
0 = −(εa(p) − εa(q))(εb(p) − εb(q)), (7)

εa,b(p) =
√

p2 +m2
a,b.

This form is not unique and other possible expressions for
k2
0 are discussed in [12,13]. In favour of choice (7) we men-

tion the following arguments. It is well-known [10,14] that
for the one-photon exchange contribution in QED only
choice (7) in the Feynman (diagonal) gauge leads to the
same correct result (the Breit-Fermi Hamiltonian) as the
prescription k0 = 0 in the Coulomb (or transverse Lan-
dau) gauge. The same is naturally true for the one-gluon
exchange contribution in QCD. Moreover as shown in [14]
for any effective vector potential generated by a vector
exchange and its couplings to conserved vector currents
(vertices) there is the so-called instantaneous gauge which
plays the role of the Coulomb gauge. In the instantaneous
gauge the prescription k0 = 0 reproduces the same result
as the expansion in k2

0 fixed by (7) in the diagonal gauge
used here. The other reason to utilize prescription (7) is
the reproduction of the correct Dirac limit in this case
[13].

The (p2/m2) expansion of (6) with the account of (7)
yields:

1
[−(εa(p) − εa(q))(εb(p) − εb(q)) − k2]2

∼= 1
|k|4

[
1 − (p2 − q2)2

2mamb|k|2
]

=
1

|k|4 − 1
2mamb|k|6

[
(k · p)2

+2(k · p)(k · q) + (k · q)2
]
. (8)

After the Fourier transform of (8) we obtain in the con-
figuration space:

−8πA
∫

d3k

(2π)3
eik·r 1

|k|4
[
1 − (p2 − q2)2

2mamb|k|2
]

= Ar −
{

Ar

2mamb

[
p2 +

(p · r)2
r2

]}
W

, (9)

where the notation {. . .}W means the Weyl ordering pre-
scription for p and r variables.

Now we turn to the constantB term in (4). The Fourier
transform of it gives in the momentum space

B

∫
d3re−ik·r = B(2π)3δ(k), k = p − q. (10)

The simplest relativistic version of (10) is multiplying it
by the energy factor ε(p)/m, which in the symmetric form
looks like √

εa(p)εb(p)
mamb

δ(p − q). (11)

Expanding (11) in (p2/m2) we get

δ(p − q)
[
1 +

p2

4

(
1
m2

a

+
1
m2

b

)]
. (12)

So in the configuration space the constant term acquires
the form

B

[
1 +

1
4

(
1
m2

a

+
1
m2

b

)
p2

]
. (13)

All other relativistic corrections of order (p2/m2) have
been considered in [8]. After using the Weyl ordering no-
tations, expressions (9) of [8] take on the form:
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Adding contributions (9) and (13) to the above expres-
sions we obtain the complete spin-independent part of the
(qq̄) potential (κa = κb = κ):

VSI(r) = V0(r) + VVD(r) +
1
8

(
1
m2

a

+
1
m2

b

)
×∆[

VCoul(r) + (1 + 2κ)V V
conf(r)

]
, (14)

where V0(r) is given by (3), (4). For the velocity-dependent
part VVD(r) we have

VVD(r) =
1

2mamb

{(
−4

3
αs

r

) [
p2 +

(p · r)2
r2

]}
W

+
(1 − ε)
2mamb

{
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[
p2 − (p · r)2

r2

]}
W

−ε

2

(
1
m2

a

+
1
m2

b

) {
Arp2}

W

− ε

2mamb

{
Ar

[
p2 +

(p · r)2
r2

]}
W

−
(
ε

2
− 1

4

) (
1
m2

a

+
1
m2

b

)
Bp2

+
1 − ε

mamb
Bp2. (15)

Now representing (15) in the form

VVD(r) =
1

mamb

{
p2Vbc(r) +

(p · r)2
r2

Vc(r)
}

W

(16)

+
(

1
m2

a

+
1
m2

b

) {
p2Vde(r) − (p · r)2

r2
Ve(r)

}
W

with

Vbc(r) = −2αs

3r
+

(
1
2

− ε

)
Ar + (1 − ε)B;

Vde(r) = −ε

2
Ar +

(
1
4

− ε

2

)
B;

Vc(r) = −2αs

3r
− 1

2
Ar; Ve(r) = 0, (17)

we are able to test the fulfilment of the exact Barchielli,
Brambilla, Prosperi (BBP) relations [15], which follow
from the Lorentz invariance of the Wilson loop. In our
notations these relations look like

Vde − 1
2
Vbc +

1
4
V0 = 0

Ve +
1
2
Vc +

r

4
dV0

dr
= 0 (18)

(in the original version Vbc ≡ −Vb − 1
3Vc and Vde ≡ Vd +

1
3Ve). One can easily find that the functions (17) identi-
cally satisfy relations (18) independently of values of the
parameters ε and κ. This is a highly nontrivial result. For
the perturbative one-gluon-exchange part of VVD our ex-
pressions for Vb, . . ., Ve are the same as in [15,16], but for

the confining (long-range) part they are different, namely
the result of [15,16] (from the minimal area law) is as
follows:

Vbc(r) = −2αs

3r
+

1
6
Ar; Vc(r) = −2αs

3r
− 1

6
Ar;

Vde(r) = −1
6
Ar − 1

4
B; Ve = −1

6
Ar. (19)

No value of ε in (17) can reproduce the above result. The
terms with the Laplacian in (14) coincide only for κ = 0
and ε = 0, i. e. for purely vector confining interaction
without the Pauli term in the vertex (2). Our expressions
(14) and (15) for purely vector (ε = 0) and purely scalar
(ε = 1) interactions and for κ = 0 coincide with those of
[13] except for the constant B term. Our B term for ε = 1
(scalar potential) is the same as in [15]. The B term from
[13] does not satisfy the BBP relations (it gives contri-
bution −B/2 only to Vde). Our result (15) for the scalar
(ε = 1) confining potential also differs from the one ob-
tained in [17], where the prescription k0 = 0 was used and
as a result the contribution of retardation was lost. The
differences between our results and the results presented
in [18] originate from the use of specific models such as
minimal area law, flux tube, dual superconductivity and
stochastic vacuum.

The spin-dependent part of the (qq̄) potential is given
in [8] (κa = κb = κ):

VSD(r) =
1

mamb

1
r

d
dr
VCoul(r)L · (sa + sb)

+
1

2m2
a

1
r

d
dr

{
[VCoul(r) − Vconf(r)]

+2(1 + κ)
(

1 +
ma

mb

)
V V

conf(r)
}
L · sa

+
1

2m2
b

1
r

d
dr

{
[VCoul(r) − Vconf(r)]

+2(1 + κ)
(

1 +
mb

ma

)
V V

conf(r)
}
L · sb

+
1

3mamb

{
1
r

d
dr

[VCoul(r) + (1 + κ)2V V
conf(r)]

− d2

dr2
[VCoul + (1 + κ)2V V

conf(r)]
}

×
[

3
r2

(sa · r)(sa · r) − sa · sb

]
+

2
3mamb

×∆[VCoul(r) + (1 + κ)2V V
conf(r)]sa · sb, (20)

where L is the orbital momentum and sa,b are the spin
momenta.

The correct description of the fine structure of the
heavy quarkonium mass spectrum requires vanishing of
the vector confinement contribution. This can be achieved
by putting 1 +κ = 0, i.e. the total long-range quark chro-
momagnetic moment equals to zero, which is in accord
with the flux tube [3] and minimal area [16,18] models.
One can see from (20) that for the spin-dependent part of
the potential this conjecture is equivalet to the assump-
tion about the scalar structure of confinement interaction
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[1]. The specific value of vector-scalar mixing parameter
ε = −1 provides the correct description of radiative decays
of heavy quarkonia [5].

In this way setting κ = −1, we obtain:

VSD(r) =
1
2

(
4αs

3r3
− A

r

) [
1
m2

a

L · sa +
1
m2

b

L · sb

]

+
1

mamb

(
4αs

3r3

)
L · (sa + sb)

+
8π

3mamb

(
4αs

3

)
δ(r)sa · sb +

1
mamb

(
4αs

3r3

)

×
[

3
r2

(sa · r)(sb · r) − sa · sb

]
. (21)

Expression (21) for VSD completely coincides with the one
found in [16,3]. The Gromes relation is identically ful-
filled. Our result supports the conjecture that the long-
range confining forces are dominated by chromoelectric
interaction and that the chromomagnetic interaction van-
ishes. It is also in accord with the dual superconductiv-
ity picture [19,18]. It is important to mention, that our
relativistic quark model is in complete agreement with
the heavy quark effective theory (HQET). The model cor-
rectly reproduces HQET results for heavy-to-heavy and
heavy-to-light weak transition matrix elements with the
specific choice of the parameters ε = −1, κ = −1 (see [9]
for details) in accord with the ones found previously [5,
8,20]. It includes the proper description of invariant form
factors within the inverse heavy-quark-mass expansion up
to the terms of order of 1/m2

Q. The mass spectra of D and
B mesons have been also calculated in our model in com-
plete agreement with the HQET predictions and available
experimental data [21]. It is interesting to note that the re-
lations which are equivalent to the BBP relations (18) can
be obtained by use of the reparametrization invariance (in
four-velocity) within HQET [22]. The phenomenological
implications of retardation corrections will be considered
elsewhere.
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